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Abstract—This paper reviews methods that are used for ade-
quacy risk assessment considering solar power and for assessment
of the capacity value of solar power. The properties of solar
power are described as seen from the perspective of the power-
system operator, comparing differences in energy availability and
capacity factors with those of wind power. Methodologies for
risk calculations considering variable generation are surveyed,
including the probability background, statistical-estimation ap-
proaches, and capacity-value metrics. Issues in incorporating
variable generation in capacity markets are described, followed
by a review of applied studies considering solar power. Finally,
recommendations for further research are presented.
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I. INTRODUCTION

A
key issue for power-system planning is the contribution

of renewable and other emerging energy resources to

meeting demand reliably. Mechanical failures, planned main-

tenance, or lack of generating resource in real-time may leave

a system with insufficient capacity to meet load—requiring

load curtailment. The contribution of a resource to serving

demand reliably is measured typically by estimating capacity-

value metrics, defined through the effect that its addition to the

system has on the calculated risk of load-curtailment events.

The issue of real-time resource availability is particularly

salient with renewable resources, as their output is governed

by uncontrollable weather conditions.

An IEEE Task Force focused on techniques for estimating

the capacity value of wind power published a survey on that

technology [1]. This new paper has a similar purpose of

surveying methods for estimating the capacity value of solar

power and recent activity applicable to both wind and solar.

We place strong emphasis on critical review of modelling

methodology, particularly with respect to capacity markets

and statistical modelling, which distinguishes our review work

from related publications [1]–[3]. The paper builds on earlier

Task Force papers which concentrate more specifically on

solar power [4], [5]—while the high-level topics covered in

this new paper are broadly similar to those in a previous

conference paper [5], the material is revised entirely for this

as the Task Force’s final report apart from Sections III-A–

III-C (these cover the essentials of the relevant probabilistic

and statistical modelling, where the Task Force’s thinking

has evolved less rapidly.) Throughout the Task Force’s activ-

ity, there is particular emphasis on matters of solar-resource

assessment (with which the power-system community may

be less familiar as compared to wind). In the solar-specific

sections, we focus on photovoltaic (PV) solar rather than

concentrating solar power (CSP). CSP has intrinsic energy-

storage capability [6], [7], providing some control of co-

incidence of output with high demands. This characteristic

of CSP makes relevant modelling approaches fundamentally

different from PV. A brief discussion regarding the interaction

between solar power and co-located energy storage, which is

applicable to CSP, is given in Section III-F.

This paper addresses four major issues that are related to

solar power. First, Section II discusses key properties and

assessment of solar resource. Solar availability features unique

spatial and temporal correlations, which are modified by de-

sign considerations such as panel orientation and the inclusion

of sun-tracking systems or energy storage. Section III provides

a detailed discussion of the statistical methods that are used

for adequacy-index and capacity-value estimation—much of

which applies equally to other variable generation (VG) tech-

nologies, as well as solar. We highlight the importance of cap-

turing statistical relationships between renewable resource and

demand, and consequences of limited data. It discusses also

relevant theory associated with capacity markets. Section IV

surveys recent capacity value studies and practice in the

industrial and research literature, emphasising consequences of

different methodology choices. Finally, Section V concludes

and discusses key research needs in this area.

II. PV-RESOURCE ASSESSMENT

Surface solar irradiance follows predictable diurnal and

seasonal cycles. However, solar irradiance can be difficult to

model and forecast, due to cloud cover and other meteorologi-

cal effects. The recent emergence of PV and its distributed na-

ture make reliable long-term output data rare, forcing reliance

on modeled PV-generation data [8]. Weather variability occurs

at different temporal and spatial scales, from clouds moving

across individual panels (seconds to minutes [9]) to weather

fronts moving over a region (hours to days [10]) to multi-

day regimes that dictate continental-scale weather patterns

[11]. Fig. 1 demonstrates the variability in PV output at a

single location over short timescales and that this variability is

reduced if many PV systems over a wide area are aggregated.

Modelling PV power output accurately is hampered by

the difficulty of estimating solar irradiance [12], especially

due to cloud cover. Aerosols and other atmospheric particles
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Fig. 1. Daily-average capacity factor for a single PV system near Milan and
for PV deployed across Italy during 2015. Single-site and Italy-wide data are
from PVOutput and Terna, respectively.

Fig. 2. Simulated power generation for a 1-kW system installed in Jaen,
Spain, averaged hourly over all days of 2015 (left) and summed over the
entire year (right). The tilted systems are installed at 35-degree tilt angle,
facing exactly south, east, or west. Data from https://www.renewables.ninja.

scatter incoming light even with clear skies [13], affecting the

productivity of concentrating technologies (CSP and concen-

trating PV) and, to a lesser degree, PV. Moreover, deposition

of aerosols and particles on panels affects productivity [14].

Output depends also on many secondary parameters: the PV

technology that is used, tilt and azimuth angles, whether

panels are fixed or have tracking systems, module temperature

[15], and panel shading as a function of sun angle [16].

Fig. 2 illustrates the impact of orientation on PV output,

using data for Jaen, Spain. Other weather variables play a

role as well: the severity of soiling is mediated by rainfall

[17] and snow can cover panels (reducing output) and reflect

sunlight off the ground (increasing output) [18]. Finally, a

PV system’s inverter determines AC power output, with an

efficiency that depends on utilization (power level and input

voltage) and operating temperature [19]. It is common for

inverters to be undersized relative to peak DC output of a

panel, giving flattened power-output peaks. While this affects

summer peak output in particular, snow affects winter peaks.

PV output during both summer and winter peaks contribute to

the capacity value of a PV system.

A. Calculating Power Output

A key challenge in modeling overall system performance is

obtaining accurate irradiance data. Several methods exists to

convert irradiance to DC power output from PV panels. Com-

mon approaches are empirical models, which are parameter-

ized from manufacturer datasheets, and experimental data [15],

[20]. The two primary weather inputs—module irradiance and

temperature—are modified by the secondary parameters that

are described above, requiring assumptions (e.g., on panel

orientation) or additional data (e.g., aerosol optical depth or

snowfall volume). These secondary parameters are of critical

importance for the diurnal profile of PV generation, which, in

turn, is relevant for its capacity contribution. The impacts of

these secondary parameters are illustrated in Fig. 2.

The sun’s average power output (the solar constant) and

inclination are fundamental values. Thus, libraries such as

PVLIB [21] can estimate overall power output over a typical

meteorological year (TMY) easily. TMY data provide syn-

thetic hourly power outputs, which are sufficient for many

types of analyses [22], [23]. The sufficiency of TMY data

stem, in part, from national-scale solar capacity factors having

less internannual variability compared to those for wind (e.g.,

±0.3% in Europe versus ±1.5% for wind [8], [24]). However,

the use of TMY data requires correct depiction of the temporal

and spatial dependency of PV generation under real weather

conditions and preserving correlations with temperature, de-

mand, and wind [25].

B. Sources of Irradiance and Weather Data

There are three primary sources of data: ground-based mea-

surements, satellite imagery, and meteorological reanalyses.

Ground-station data are best for accuracy and high temporal

resolution. However, freely available data are limited and

of mixed quality, suffering from missing data, measurement

errors, and time aggregation. Data are available from Base-

line Surface Radiation Network (BSRN) [26], Global Energy

Balance Archive (GEBA) [27], Surface Radiation Budget

(SURFRAD) [28], Southern African Universities Radiometric

Network (SAURAN) [29], and some national weather services.

Geostationary weather satellites cover specific regions and

provide half-hourly images which can be processed to derive

direct and diffuse surface irradiance [30]. Meteosat covers

Europe, northern Africa, and parts of Asia, with free data

available through Satellite Application Facility on Climate

Monitoring (CM-SAF) [31] and Copernicus Atmosphere Mon-

itoring Service (CAMS) [32]. Geostationary Operational En-

vironmental Satellite (GOES) covers the Americas [33], but

no equivalent data provider exists. Prospective users of GOES

must process imagery themselves or use derived products, such

as National Solar Radiation Data Base (NSRDB) [34]. While

satellite data are considered state-of-the-art (due to high spatial

resolution), they suffer from extensive periods of missing data

and do not provide global coverage yet [8].

Reanalyses are more consistent across space and time and

provide global coverage, created by assimilating historical me-

teorological measurements into a numerical weather-prediction

model [35]. As such, reanalyses generate internally-consistent

pictures of the state of the global atmosphere. Thus, reanalyses

are gaining traction in simulating wind resources [24], [36],

[37]. However, spatial resolution is coarse, typically via a

20-km to 100-km square grid [35]. Moreover, reanalyses’

focus on three-dimensional atmospheric flow means that so-

lar irradiance so far has not been a primary consideration.

Nevertheless, with appropriate bias correction, reanalyses can

https://www.renewables.ninja
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provide accurate PV-output simulations [8]. Recently, several

turnkey services have launched which provide freely available

PV (and wind) simulations based on reanalysis data, including

from National Renewable Energy Laboratory [34], European

Climatic Energy Mixes Demonstrator [38], Photovoltaic Ge-

ographical Information System [39], Joint Research Centre’s

European Meteorological derived HIgh resolution RES gener-

ation dataset (covering Europe) [37], and the Renewables.ninja

web platform (which offers simulations that are based on CM-

SAF) [8], [24].

C. Measured Power-Output Data

Metered data from individual PV systems are an alternative

to simulation. These are more challenging to obtain than for

other generation technologies, due to the small and distributed

nature of PV. For example, there are 1.4 million PV systems in

Australia [40], compared to less than 300 generators registered

in National Electricity Market [41]. The lack of metered data

poses a challenge to system operators, for which PV output is

visible only as a reduction of demand [42].

Early government-funded field trials produced metered out-

put data from small numbers of PV panels (e.g., 229 systems

in United Kingdom from between 2002 and 2006 [43]).

Such datasets are becoming increasingly common, with some

providing comprehensive real-time updates, for example from

Australian Photovoltaic Institute (6000 systems in Australia

[40]) and Sheffield Solar (1700 systems in United Kingdom

[44]). These rely on the proliferation of web-enabled inverters,

which can upload data with high temporal resolution (e.g.,

five-minute) data to online aggregator services.

System operators in many regions include PV output as part

of their public data now. These data must be estimated, often

by combining bottom-up approaches that are listed above with

top-down statistical estimation [44], as operators cannot meter

every PV system in a country.

D. Future Improvements

Many methodologies, including cloud imagery, physical cli-

mate models, and machine learning, are employed to improve

solar-power modeling [12], [45], [46]. No single technique

appears to be dominant for all applications. However, hybrid

or ensemble machine-learning models appear to offer better

accuracy than other techniques [47]. With improved models,

important data issues remain: averaging data to hourly or lower

resolutions, PV generation modeled inaccurately, and errors in

electricity-demand data contribute uncertainty in PV capacity

values [9]. Even seemingly small systematic errors (e.g., a 30-

minute shift in some modelled data) can have a large impact

on capacity-value estimates if they affect the relative timing

of peak PV generation and demand [9].

From a decision-analytic perspective, there is also a need

to build statistical error models for the relationship between

resource datasets and real-world analogues, i.e., going beyond

improved central estimates of historic resource.

Improvements in the data and modeling for solar-power

prediction brings real benefits for system planning and opera-

tions, e.g., the California system must handle extensive over-

generation of solar power, with system-wide curtailment of

solar power in 2019 exceeding 921 GWh [48].

III. METHODOLOGY

This section outlines the general framework that is used

for risk-based adequacy and capacity-value assessments in

systems with substantial VG penetrations. Most of the material

is applicable equally to all VG. Thus, this material seldom

makes specific reference to solar power. Specific consideration

of energy storage is beyond the scope of this paper. Thus,

energy storage is not discussed except in Section III-F.

A. Probability Background

In adequacy assessment, we are interested in the values of

available conventional capacity, Xt, available VG capacity, Yt,

and demand, Dt, during multiple points in time, which are

indexed by t. Let the (random) vector, St = (Xt, Yt, Dt),
denote the system state at t = 1, . . . , n within the period

that is under study. The system margin, Zt = Xt + Yt −Dt,

is a function of St. A full probability model for the system

would be sequential, describing St as a stochastic process over

the entire time period. Such a stochastic process is needed

to calculate some risk metrics, e.g., frequency and duration

indices, or the distribution of total energy unserved across the

period under study.

However, some quantities, such as loss-of-load expectation

(LOLE), which is defined as:

[LOLE] =

n∑

t=1

Prob {Zt < 0} , (1)

may be defined in terms of the marginal distributions of St

integrated over time. LOLE may be specified equivalently in

terms of a simpler time-collapsed or snapshot model with a

time-independent state vector, S = (X,Y,D), the distribution

of which is specified by:

Prob {S ∈ A} =
1

n

n∑

t=1

Prob {St ∈ A} , (2)

for any event, A. In (2) the distribution of the state vector, S,

is the same as that of state vector, St, sampled at a uniformly

randomly chosen point in time. The specification in (2) is help-

ful for some computational or theoretical analyses. Using (2),

LOLE is given as (∆t)Prob {Z < 0}, and expected energy

unserved as (∆t)E[max{−Z, 0}], where Z = X+Y −D and

∆t is the length of the period under study. The distribution

of S typically is estimated from the empirical distribution

of observations of St. Thus, the time-collapsed model is

used almost always in adequacy studies that measure risk

using quantities, such as LOLE, which do not require a full

sequential model.

B. Statistical Estimation

In the use of probabilistic and statistical concepts such as

independence or correlation, it is essential to be clear as to

which of the sequential and time-collapsed models these refer.

For example, suppose Yt is available solar power at time t and
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that at any given time, t, the random variables, Yt and Dt, are

independent (neither being informative about the other given

the knowledge at time t). Because daily minimum demand

usually occurs overnight when it is dark, within the time-

collapsed model the lowest values of D are associated with

zero values of Y , introducing substantial probabilistic depen-

dence between these two time-collapsed random variables.

In reality, even conditional on information at time t, there is

typically still some dependence between variable generation,

Yt, and demand, Dt, due to the existence of unmodelled

weather effects, which influence both Yt and Dt. This modifies

the dependence between the corresponding time-collapsed

random variables, Y and D.

If dependence between VG output and demand is considered

in a time-collapsed model, often this is done using a ‘hindcast’

approach, in which the empirical historical distribution of VG-

output/demand pairs, (yτ , dτ ), is used as the predictive joint

distribution of (Y,D). The random variable, X , usually is

assumed independent of the pair, (Y,D), with a distribution

estimated from an appropriate model. Then:

[LOLE] =
∆

N

∑

τ

Prob {X + yτ < dτ} , (3)

where ∆ is the length of a time step, N is the number of

historic years of data, and the sum is over historic times, τ .

Inevitably, there are limited relevant data in the hindcast

approach for estimation of the empirical distribution at times

of high demand and low VG output, which dominate the

estimates of risk measures. This can be dealt with by us-

ing statistical extreme-value theory to smooth the extremes

of a dataset [49]. To the best of our knowledge, the only

works using more sophisticated direct joint modelling of

the relationship between VG output and demand in a time-

collapsed model are the work of Wilson et al. [50] (which

uses temperature as an explanatory variable for both wind

and demand, and invokes independence of wind and demand

conditional on temperature and on time of day, week, and

year); and the work of Gao and Gorinevsky [51] (which uses

quantile regression to model explicitly the distribution of wind

conditional on demand).

Studies that consider estimation of the uncertainty that arises

from the use of limited numbers of years of data typically

assume that a result derived from the longest available dataset

is ‘the truth’ [52], [53]. However, this is not fully satisfactory,

as the result may be driven by a small number of historic

weather systems, and there may be a tendency for extreme

peaks to cluster in neighbouring years, reducing further the

number of fully independent datapoints. Some discussion of

this is provided in the literature [49], [50], although more work

in this area and on the consequences for decision support is

required.

Most studies using a sequential model assume that VG

output and demand may be modelled as independent processes

within the season under study [54], [55]. In reality, as dis-

cussed above, some dependence between these processes may

be introduced by the variability of the weather. There is little

research on multivariate-stochastic-process modelling of VG

output and demand for adequacy assessment [56], [57].

C. Capacity-Value Metrics

Capacity-value metrics are used commonly to visualise the

contribution of VG (or other resources) in adequacy studies

[1]. For instance, in the time-collapsed model and with respect

to the loss of load probability (LOLP) risk index, the effective

load-carrying capability (ELCC) of a resource, Y , when added

to a background, M , is given by the solution of:

Prob {M < 0} = Prob {M + Y < [ELCC]Y,M} , (4)

and the equivalent firm capacity (EFC) is given by solving:

Prob {M + Y < 0} = Prob {M + [EFC]Y,M < 0} . (5)

These capacity-value metrics are functions of the chosen risk

metric and the background, M , to which it is added, as well

as of the additional capacity. Thus, it is incorrect to refer to

the capacity value of Y without that caveat, or to use a single

capacity-value figure across multiple circumstances [58]. This

nuance is particularly important in capacity-market applica-

tions. Such capacity-value metrics are also non-additive, i.e.,

the ELCC (or EFC) of an addition, Y1+Y2, typically will not

equal the sum of the ELCCs (of EFCs) of Y1 and Y2 added

to the same background.

As is clear from (4) and (5), when adding a single relatively

small resource to the background of a much larger system,

ELCC and EFC take very similar values. This similarity

applies when calculating the marginal capacity value of a

single unit in a capacity market. In other applications, it might

be of interest to calculate the capacity value of an entire fleet

of wind or solar generation when added to the background

of the other resource and demand. In such cases, ELCC and

EFC may take different values and it is necessary to consider

which capacity value metric is appropriate. ELCC is used most

commonly, however it is not always clear whether this choice

is considered carefully with respect to the specific application.

Various special cases (e.g., small Y and exponentially

distributed X) are surveyed by Dent and Zachary [59], build-

ing on earlier work [60]–[63]. These cases are helpful in

understanding what is driving the results of capacity-value cal-

culations. Computation is usually sufficiently straightforward

that these special cases are not needed typically for model

tractability.

D. Including VG in Capacity-Remuneration Mechanisms

Capacity-remuneration mechanisms (CRMs) incentivise the

presence of an appropriate level of generation and equivalent

capacity for resource-adequacy purposes. They take a range

of forms, with a useful taxonomy that is provided by Agency

for Cooperation of Energy Regulators (ACER) [64] and sum-

marized in Fig. 3. Further detailed surveys of CRMs may be

found in other works [3], [65], [66], with Table 0.1 in the latter

providing a more granular taxonomy than that of ACER. For

crediting VG in CRMs, appropriate modelling of the adequacy

contribution of the resource is needed. This applies similarly

to all volume-based mechanisms, and in a different manner

to price-based mechanisms. Thus, this section describes the

theory behind volume- and price-based CRMs, particularly the

role of capacity-value metrics in including offers from VG.
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Volume based Price based

TargetedMarket-wide
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Capacity 
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Capacity auction

Reliability option

Capacity 

payment

Fig. 3. Taxonomy of capacity-remuneration mechanisms [64].

1) Volume-Based CRMs: Here a central authority defines

a volume of capacity to procure, e.g., based on a target risk

level or a cost-benefit analysis. Then, typically an auction is

held to determine the units that are selected and the capacity

price.

There is a standard theory for capacity procurement in

volume-based markets, in which all offers are from resources

equivalent to conventional generation [58]. Suppose that (to a

good approximation) adding or subtracting a limited capacity

of conventional resource shifts the distribution of the margin,

Z, with changes in the shape or width of that distribution

being a lower-order effect. Then, it is possible to define the

volume of capacity in terms of expected available capacity,

with the product offered by an individual unit being its

expected available capacity. Units are added in ascending order

of their ratio of offer price to expected capacity, until the

sum of their expected available capacities equals the target.

This is referred to then as an auction with expected available

capacity (sometimes referred to as ‘de-rated capacity’) as a

‘simple additive commodity’. Without significant additional

complication, the fixed capacity target could be replaced by

a demand curve, implying that at a higher auction price the

amount procured will be lower.

The assumptions that are required to run an auction with

an additive commodity do not hold when non-conventional

resources, such as VG or energy storage, participate in the

market. Instead, the above mechanism may be generalised by

adding units in ascending order of the ratio of offer price to the

marginal EFC against the background of the finally accepted

set of resources, until a specified risk target is reached.

Crucially, however, the final accepted set of resources cannot

be known ex ante. Thus, it is necessary to perform an iterative

process of running the auction and recalculating EFCs with

the latest auction outcome, until convergence is obtained [58].

This is in contrast to how quantity-based capacity markets

operate currently, wherein all bidders submit price/quantity

offers that are based on their (possibly de-rated) capacity,

which is determined ex ante. Therefore, quantity-based CRMs

(as structured currently) cannot consider contributions of all

types of resource on an equal basis.

Volume-based CRMs typically require specification of a

penalty if a contracted resource cannot deliver when required.

One specific form of penalty is a reliability option (RO)

[67], which is a one-way contract for differences against the

energy-market price. Whenever the market price rises above a

specified level, any firms that hold a RO are required to pay the

difference between the strike price and the market price to the

system operator. VG can face significant risk in taking on such

contracts, due to its uncertain and variable output. However,

this is not discussed in detail here as penalty regimes are a

separate matter from capacity value and procurement.

2) Price-Based CRMs: Under price-based CRMs, the reg-

ulator or system operator determines the total remuneration

for capacity, and how this is assigned ex post to resources

according to their performance. The total capacity investment

is a market outcome, based on incentives provided by the CRM

and other sources of income.

Total remuneration typically is calculated as the product of a

volume element (the total generation capacity that is required

to ensure system adequacy) and price element. The volume

element is calculated similarly to the capacity target for a

volume-based mechanism, and is multiplied by a specified

per-MW cost of new entry to give the total remuneration.

Variants include pre-2001 England and Wales, wherein there

was no fixed capacity payment. Instead, for each time the total

payment was the product of day-ahead LOLP and a specified

value of lost load [68].

Price-based mechanisms do not require the use of a de-

rating factor or capacity value in a capacity auction, as the

outcome of the generator availability is used to distribute

the revenues. Thus, the complications surrounding ex ante

assignment of capacity values do not arise. However, this

means that resources are rewarded implicitly on the basis of

some form of mean output, which may not reflect well a

resource’s contribution within an ex ante risk calculation. This

is particularly problematic for VG, the contribution of which

within probabilistic risk calculations can be much less than

that of firm capacity equal to its mean output.

E. Generation-Expansion Models

Several works embed adequacy risk calculations in

generation-expansion optimization models [69]–[71]. These

works minimise the cost of capital investment, unserved

energy, and (possibly) operations. Typically, unserved-energy

costs are included through a hindcast risk calculation using

multiple years of demand and VG-output data. To give a linear

optimization model, it is necessary to simplify representation

of conventional generators, e.g., assuming that conventional-

plant availability is deterministic and equal to its mean.

Bothwell and Hobbs [71] assess social-welfare losses if VG

capacity is credited inappropriately and express the value of

additional VG in terms of its marginal EFC at an economic

optimum. They do not provide, however, a practical scheme for

operating a CRM with both VG and conventional generation.

In energy-system models with wider scope, e.g., The Inte-

grated MARKAL-EFOM System (TIMES), security of elec-
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tricity supply is represented typically via a target de-rated mar-

gin of installed capacity over peak demand [72], as embedding

any kind of risk calculation would be too computationally

expensive.

F. Hybrid VG and Energy Storage

At a system level, energy storage can enhance the capacity

value of VG [73]. Here we consider integration of energy

storage with VG at a single site (i.e., with a single grid

connection). Such energy storage can be inherent in the VG,

as for CSP plants [6], [7], or dedicated energy storage that

is co-located with VG, as in grid-connected microgrids [74].

Typically, integrated energy storage can recharge only from the

associated VG resource (e.g., heat from irradiance in the case

of CSP), and not directly from the grid [75]. Thus, capacity

value can be computed only for the integrated system.

Examples of such capacity-value estimations for CSP in-

clude the work of Madaeni et al. [7], which uses a capacity-

value approximation that is based on the 10 highest-LOLP

hours of each year. They conclude that increased energy-

storage capacity increases capacity value and reduces its inter-

annual variation. Usaola [76] study a CSP plant with determin-

istic dispatch using a time-sequential Monte Carlo calculation

and obtain qualitatively similar results, with differences arising

from sizing of the CSP plant and different generation and

demand statistics. Mills and Rodriguez [77] consider a looser

form of coupling, wherein PV that is co-located with batteries

share inverters, necessitating an integrated assessment.

On the other hand, if VG and energy storage can be operated

independently (e.g., a battery with a separate inverter), the

capacity value of the integrated system may be calculated

as the sum of capacity values of its constituent components,

if two conditions are satisfied. First, the contribution of the

VG and energy storage must be small with respect to the

total system size, so that their capacity values are marginal

[58]. Second, each constituent capacity-value calculation must

account for the ability to re-dispatch existing generation and

energy storage. The difference of this integrated capacity value

and a simple dispatch adjustment can be very substantial—

up to an order of magnitude for a combination of pumped

hydroelectric energy storage and solar [78], [79].

IV. SURVEY OF CURRENT PRACTICE

This section reviews the literature to illustrate points made

earlier. It does not attempt an exhaustive literature survey of

practice, as in Doorman et al. [3] and Söder et al. [2], which

are referenced as relevant. The number of individual works that

are cited in this section is relatively small, as many studies

use similar methodologies. One limitation of many broader

surveys is that they do not provide our critical discussion of

technical modeling approaches.

A. Recent Methodology-Related Research

As described in Section III, if a statistical relationship

between VG output and demand is taken into account, this

is done typically through the ‘hindcast’ approach. We note

examples of formative works taking such an approach with

wind [1], [2] and solar generation [9], [80] generation. Several

studies review the variants of methodology that are used in

different studies or the consequences of different approaches

for numerical results. Mills and Wiser [81] provide a list of the

capacity-value approaches that are used in different utilities for

planning purposes. Madaeni et al. [82] use the western United

States as a case study, Zhou et al. [83] emphasise the impacts

of mis-estimating capacity value, and Awara et al. [84] survey

the impact on calculation results of making different modelling

decisions.

Other recent research considers associated data issues. Gami

et al. [9] examine consequences for calculation results of

input data resolutions such as temporal resolution and am-

biguity over definitions of data fields in recording PV output.

Madaeni et al. [7] use hindcast to compare how different

approximations to the full risk calculation affect LOLE-based

ELCC results. Abdel-Karim et al. [80] demonstrate carefully

how issues in data rounding affect comparison of results from

different codes, in the context of using the hindcast approach

on the IEEE Reliability Test System.

B. Capacity Markets

Capacity-value metrics for VG are of most relevance in

volume-based CRMs: renewables often do not participate in

strategic reserve/targeted mechanisms. Price-based CRMs do

not require assigning a capacity value ex ante (cf. Section III-C

and examples such as the Nordic system [2]).

In volume-based CRMs, the most common method of

accounting for the adequacy contribution of different tech-

nologies is application of a de-rating factor. Thus, a unit is

compensated for only a portion of its nameplate capacity in

auction processes and in consequent payments, to account for

its estimated statistical availability properties. Mean availabil-

ity is used typically for conventional generation.

Applying an appropriate de-rating factor to VG is challeng-

ing, however, as we discuss previously. A range of modelling

approaches for resource-adequacy assessments, partly based

on the characteristics of the relevant power system, can be

used. Bothwell and Hobbs [71] and Söder et al. [2] include

surveys of current practice in North America and Europe,

with the latter examining the case of wind generation only

but providing a survey of a much larger number of systems.

Table 3 in the work of Söder et al. [2] summarises the

methods that are used to determine capacity value of wind

in the systems that are surveyed. Where wind is eligible

for capacity payments, a risk-based capacity-value metric is

used typically, e.g., marginal EFC in Great Britain, average

EFC in Italy, and marginal ELCC in Ireland. Some systems,

particularly those that rely on strategic reserves, such as the

Nordics, preclude renewables from receiving payments at all.

Great Britain permits wind generators to receive a capacity

payment if they are not in receipt of low-carbon support, which

in practice means that most wind farms do not participate.

The Irish and Italian systems allow all renewable projects to

participate in capacity auctions. However, to date, renewable

projects represent only a tiny proportion of successful offers

in Ireland and Italy.
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From a risk-modelling perspective, there are different con-

texts in which it may be necessary to consider VG within

capacity auctions. Clearly, in systems in which VG receives

a capacity payment on the basis of a risk-based capacity-

value metric, it must be included in the risk calculations.

There are other examples in which VG does not receive

capacity payments, but is included in the risk modelling which

underpins the capacity market, e.g., in Finland, where wind

can reduce the need for strategic reserves. In other markets

(e.g., Sweden), wind is excluded explicitly, which potentially

could lead to over-procurement of other capacity.

Other systems use a summary statistic of an estimated

probability distribution of available resource to represent

the contribution of VG in capacity markets or policy-facing

resource-adequacy studies. For instance, PJM uses the mean

conditional on summer-peak hours, Texas uses mean from

highest-load hours during the previous 10 years, Spain uses the

lower fifth quantile of the distribution, and a system that was

proposed (but never implemented) in Alberta uses 250 hours

of lowest historic margin during the last five years, which

accounts for significant risk contribution in the maintenance

season. All of these approaches credit VG on the basis of its

own properties, i.e., in contrast with a risk-based approach,

not on how its properties affect the risk level in the system as

a whole. This property of these approach has potential serious

consequences when VG penetration is very high, as it is in

Texas. However, these approaches may be more appropriate

at very low penetrations of VG, which can be checked on

a case-by-case basis. Bothwell and Hobbs [71] examine the

economic consequences of using alternatives to an appropriate

risk-based capacity credit (e.g., techniques that are employed

in ERCOT, IESO, ISO New England, PJM, and California).

It is not clear in all cases whether historic metered output

is used, or whether historic meteorological data are used in

combination with a future scenario of installed VG capacity.

The former has the advantage of being based on actual

historical performance, whereas the latter often is preferable

as it permits consideration of newer or future sites where there

is little or no metered historic record.

V. CONCLUSIONS

This paper reviews methods that are used for adequacy risk

assessment considering solar power and other VG technolo-

gies, and for assessing the capacity value of VG installations.

This includes the spatial and temporal properties of solar out-

put, solar-design considerations, methods for capacity-value

assessment,and including VG in CRMs. Our survey of current

practice reveals broad heterogeneity, confirming that a review

paper of this type is warranted.

Although there is a growing literature on reliability as-

sessment and capacity value considering solar and other VG,

several outstanding issues call for additional research. While

considerable advances have been made in resource assessment

of solar and wind power, there is little work on building

error models quantifying the consequences of uncertainty in

reconstruction of historic resources. Further statistical work

on resource-adequacy assessment is needed. This includes

work on non-sequential approaches beyond hindcast and joint

VG/demand modelling for sequential models and on use of

these more advanced approaches in practical circumstances.

The overall emphasis should be on how these various de-

velopments could improve decision analysis. Finally, there

is limited understanding of how to operate capacity markets

on a technology-neutral basis with a full range of resources,

including conventional plant, VG, energy storage, and other

emerging resources.
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