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Abstract—In this paper we present a probabilistic analysis
framework to estimate behind-the-meter photovoltaic generation
in real time. We develop a forward model consisting of a
spatiotemporal stochastic process that represents the photovoltaic
generation and a stochastic differential equation with jumps that
represents the demand. We employ this model to disaggregate
the behind-the-meter photovoltaic generation using net load and
irradiance measurements.

Index Terms—distributed PV system, SDE, spatiotemporal
model, real-time prediction

I. INTRODUCTION

The increase in penetration of user-sized distributed energy

resource (DER) systems poses challenges for the planning and

operation of the grid. A major issue with behind-the-meter

(BTM) solar generation is the lack of direct measurements of

the instantaneous power injections. Furthermore, the volatility

of solar generation production caused by weather variability

(e.g., cloud coverage) brings additional uncertainty to forecasts

[1]. This lack of observability makes it difficult to quantify

the aggregated effect of BTM photovoltaics (PV) generation

on the transmission grid. Proper characterization of BTM PV

generation in real time would allow utilities to prepare for

and quantify the risk of situations in which sudden ramps in

generation occur or in which a large amount of DER systems

trip after a fault.

Given the constraints that utilities face with respect to

measurements, forecasts, and parameters of inverters; recent

studies have investigated the issue of “disaggregating” the

PV power signal from the measurements or inferring the

instantaneous PV power through irradiance measurements and

other proxy regressors. One can consider the disaggregation

problem as an approximate algebraic relationship:

PNET = PMASKED − PPV (1)

where PNET is the net power seen by the transmission grid

(also called measured power), PPV is the aggregated power

generated by the distributed PV inverters, and PMASKED is the

This material is based upon work supported by the U.S. Department of
Energy, Office of Science, Advanced Scientific Computing Research under
Contract DE-AC02-06CH11357.

actual aggregated load demand that remains masked by the

PV production. In a high loading and high PV production

scenario, the utility might underestimate the actual load in the

feeder, and a voltage transient that trips a large amount of PV

inverters may jeopardize the dynamic stability of the system.

Several researchers are investigating how to disaggregate

the masked load from the net load signals. Vrettos et al.

[2] characterize the literature in three main groups: transpo-

sition model approaches, data-driven approaches, and hybrid

approaches. The transposition methods involve extrapolating

irradiance to a set of inverter models to compute the PV

generation. For instance, Engerer and Mills [3] use proxy

measurements from a PV inverter together with the clear-sky

index and a PV inverter performance model to extrapolate the

generation of the rest of the inverters. In [4], Killinger et al.

further delve into the cases in which the parameters of the

PV inverters are not uniform, and they develop a “projection

method” to calculate the global horizontal irradiance (GHI)

using a proxy power measurement. The GHI measures the

total amount of irradiance received by a flat surface at the

ground from above, and is a central indicator of the solar

energy that can be produced by PV panels. With regard to

the data-driven methods, Sossan et al. [5] and Patel et al. [6]

analyze the impact of global horizontal irradiance fluctuations

on the time series and use this information to desegregate the

PV generation from the net load signal. The hybrid approaches

include [7] and [8]. In the former publication, neural networks

together with load forecasts and PV production models are

used to forecast the net load. In the latter, Bright et al. use

satellite-derived GHI estimates in 10-minute intervals, together

with PV generation models, to interpolate to the aggregated

PV generation.

In this paper we propose a novel algorithm for the dis-

aggregation of instantaneous PV generation in a feeder that

falls into the category of hybrid methods. Our methodology

differs from previous work in that we consider high-frequency

measurements of irradiance and net load. It has been shown in

[9] and [10] that both the load and the PV generation, in short

time intervals, can be characterized as stochastic processes

with certain properties.

To extract information from the higher-resolution time se-

ries, we fit statistics such as temporal variance, autocorrelation
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and variogram, which allow us to obtain the parameters

of the underlying masked load process, provided that we

have a model for the spatial irradiance and the installed PV

panels. While modeling the instantaneous PV generation with

irradiance data and inverter parameters can be error-prone,

by leveraging the spatiotemporal statistics produced by the

irradiance fluctuation we can tolerate higher errors in the

model. To this end, we develop a model for the geographically

distributed PV aggregation power injection with limited solar

irradiance measurements. We then design a modified stochastic

differential equation model based on the Ornstein-Uhlenbeck

process with jumps to simulate the masked load yielding a

jump-diffusion process [9]. The net load model then results

from the combination of the two submodels. We further design

a disaggregation algorithm to mitigate the error of masked load

estimation caused by the estimated PV generation. Simulation

studies with real recorded solar irradiance data and load data

recorded by µPMU show that the spatiotemporal model with

the disaggregation algorithm is a tenable method to reduce dis-

aggregation error. Moreover, simulations indicate that we can

accurately estimate the aggregated PV active power generation

at a distribution feeder with limited sensor deployment.

The rest of the paper is organized as follows. In section II

we model the PV power with a novel spatial Gaussian process

(GP) for predicting solar irradiance under limited observations.

In section III we model the load power by an Ornstein-

Uhlenback (OU) process with jumps. In section IV we propose

a disaggregation algorithm that separates the net power with

real-time solar irradiance. In section VI we concluded our

work and discussed the possible future work.

II. SOLAR GENERATION MODEL

In this section we consider the construction of a stochastic

model of the aggregated PV power generation in a region, us-

ing sparse irradiance measurements and inverter performance

equations. The irradiance GP-based forecast follows a standard

kriging framework with examples that more recently include

[11].

A. Spatial Gaussian Process for Clear Sky Index

Whereas direct measurement of the instantaneous power

injection of each PV inverter is infeasible, one can build

approximate models that simulate the spatial distribution of the

irradiance and, together with data and models of the installed

PV inverters, approximate the total PV generation in a feeder.

Thus, we focus our efforts on developing a reliable model for

the prediction of the aggregated irradiance that acknowledges

the sparsity of measurements.

To build this model we employ a spatial Gaussian process to

represent the variability and spatial correlations in solar irra-

diance. Although the normal marginals do not represent well

the solar distribution, which tends to be bimodal (i.e., have

two concentration peaks corresponding to cloudy and sunny

conditions [12]), the correlations are useful in determining how

the irradiance in the geographic region co-varies. This relation

is expressed through the conditional distribution, which is

the critical ingredient in our predictive framework. GPs have

closed forms for the posterior and conditional distributions

and this confers a distinctive advantage in achieving fast

simulation and sampling, which can be critical in real-time

applications. We expect this conditional distribution to depend

on the weather conditions, season, and climate. Such a GP

calibration process likely needs to take place with varying

degrees in each region where it is deployed. In the next step,

the solar irradiance is used to estimate the PV power by

propagating the irradiance through a set of inverter models

whose location and parameters are assumed to be known. For

simplicity, we will assume the parameters of these inverters

are uniform, and we neglect model errors. One approach to

alleviate this restriction is discussed in [4].

We consider a realistic setting that assumes we have one

or two global horizontal irradiance (GHI) observations per

neighborhood. These observations are used to estimate the

total amount solar generation for the entire area.

The procedure we used to estimate the forecast solar pro-

duction is as follows. First we measured the global horizontal

irradiance, G, for several spatial locations and calculated the

clear-sky horizontal irradiance, Gc, for the same locations.

With these quantities we estimated the clear-sky index, κ, for

each site by

G = κGc . (2)

The clear-sky index represents the fraction of irradiance that

passes through atmosphere relative to clear-sky conditions.

The advantage of using the clear-sky index is that it is a

detrended quantity. We assume a joint distribution for κ ∼
N (µ,Σ), where the mean µ is set to zero by debiasing the

data, and the covariance matrix Σ is a symmetric positive

definite matrix, Σ = [ǫij ]1≤i,j≤n
. Many models for the

covariance function exist. Here we employ a relatively simple

anisotropic kernel:

ǫij = α · exp
(

−
(

θ2x(r
x
ij)

2 + θ2y(r
y
ij)

2
))

+ β · δij , (3)

with i, j = 1, 2, . . . , n, where α, β, θx, and θy are parameters;

rxij and r
y
ij are spatial distances between site i and site j in

the x and y directions, respectively; δij is the the Kronecker

delta function; and β · δij has the effect of a statistical nugget.

We estimate the kernel parameters by a least-squares method:

min
α,β,θx,θy

||Σmodel − Σobs||2 , (4)

where Σobs is the empirical covariance of measured κ and

Σmodel is given by the parametric function (3). We note here

that this is a spatial model aimed at characterizing the irradi-

ance variability in a small area. Because our final measure in

this study is total solar irradiance, we argue that this model has

sufficient complexity as our numerical experiments illustrate.

We have also implemented a maximum likelihood estima-

tion procedure; however, for our setup the differences were

negligible. The anisotropy, measured as the difference between

latitudinal (north-south) and longitudinal (east-west) compo-

nents of the GP kernel, seems to play an important role. We
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recorded a difference of about 20% between these components

in our experiments, which represents a point of departure

from studies such as [11]. This indicates a predominant flow

direction, which confers more accurate predictions in space.

We use the joint distribution to infer the clear sky index

at unobserved locations. If we denote by X1 the unobserved

locations and the observation sites X2 then their joint distri-

bution is represented by

[

X1

X2

]

∼ N
([

µ1

µ2

]

,

[

Σ11 Σ12

Σ21 Σ22

])

, (5)

where Σij are block covariance matrices as in (3). We compute

the conditional distribution of X1 provided observations X2:

(X1|X2) ∼ N (µ′,Σ
′

) and expressed in closed form by

µ′ = µ1 − Σ12Σ
−1
22 (X2 − µ2) , (6a)

Σ′ = Σ11 − Σ12Σ
−1
22 Σ21 . (6b)

We use a dataset that provides one-year’s worth of global

horizontal solar irradiance data of 17 distributed sites collected

every second during daylight located on Oahu island, Hawaii

[13]. The clear-sky irradiance, Gc, is calculated by pvlib [14]

using the precise time and coordinates data of solar panels

assumed to be collocated with the irradiance measurements.

The site location and names are illustrated in Fig. 1. Indicated

also are two sites used as observations and two that represent

outliers in terms of proximity to the site clusters.

DH3

DH4

DH5

DH10

DH11

DH9

DH2

DH1

AP6

AP1 AP3

AP5

AP4

AP7

DH6

DH7

DH8

Fig. 1. Illustration of the solar PV and observation sites. The blue circles
(DH4 and AP5) indicate stations that are used as observations. Black squares
indicate remote sites that show smaller correlation with the rest of them.

We compute the empirical covariance of the 17 sites and plot

the matrix entries and the entries of the calibrated covariance

model (3) in Fig. 2. The covariance represents how the 17

stations covary at every time instance in space. We note

that the model covariance approximates well the structure of

the empirical covariance. Moreover, we can see the outlier

locations being less correlated with the rest of them.

Fig. 2. The covariance matrix calculated by real κ data and the covariance
matrix model calculated by using kernel (3).

Notation Meaning

κ clear-sky index
Gc clear-sky irradiance

kd diffuse fraction:
global irradiance

extraterrestrial irradiance
Rb geometric factor: scaling factor of incidence angle

Ai anisotropy index: beam radiation
extraterrestrial radiation

β tilt angle of the tilted plane
ρg albedo of the ground
A total area of the PV array
η PV module conversion efficiency
qa additional module/array loss
Pac0 rated max AC power of inverter
Pdc0 DC power at which inverter reaches AC rating
Ps0 inverter threshold power (start to give AC power)

TABLE I
NOTATION IN PV MODEL AND DEFINITION

B. Power Model of PV Systems

The following are derivations of the power model of PV

system based on solar irradiance.

GHI (global horizontal irradiance):

G = κGc . (7)

Diffuse irradiance and beam irradiance:

Gd = kdG , (8)

Gb = G−Gd . (9)

Global irradiance on tilted plane:

GT = GbRb +Gd

(

(1−Ai)
1 + cosβ

2
+AiRb

)

+Gρg
1− cosβ

2
.

(10)

AC power output is calculated as in [1], [14]

Pac = Pac0
Pdc − Ps0

Pdc0 − Ps0
. (11)

We designed an experiment on synthetic data involving 17

sites with 2 observed sites. The irradiance data was sampled

at 1Hz frequency, which is the same as with commonly used

sensors.

Numerical results suggest that the GP model can precisely

recover the covariance matrix with limited observations. Fur-

thermore, the forecast method predicts the PV power produc-

tion of the aggregated sites without complete observations,

except for when sharp jumps in the irradiance are caused by

21st Power Systems Computation Conference

PSCC 2020

Porto, Portugal — June 29 – July 3, 2020



clouds moving in or our of the area. In Fig. 3 we illustrate the

aggregated PV power computed by collocating uniform PV

panels with deployed GHI sensors (Fig. 1), which is referred

to as the observed PV power. We also use the GP procedure

to estimate the clear sky index based on two observation sites

for the entire region, compute the irradiance, and use the same

PV model to estimate the PV power. The joint GP process

0 500 1000 1500 2000 2500 3000 3500
time [s]
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140
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 p

ow
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 [k
W

]

Inside GP calibration window
predicted
observed
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]

Outside GP calibration window
predicted
observed

Fig. 3. Aggregate AC solar power observed and predicted by using two
observation sites using eq. (11). The forecast correspond to April 8, 2010,
(left) 11 am to noon local time where three sites were used for forecast, and
(right) noon to 1 pm where the same GP fit was used to make predictions.

(5) is calibrated by using data that corresponds to the time

frame in Fig. 3 (left). The same GP process is used to make

prediction corresponding to the time frame in Fig. 3 (right).

In other words, the GP is calibrated with the entire sensor

network data for Fig. 3 (left), whereas in the second case the

GP has access only to the designated observed sites. These

results indicate a relatively good prediction capability of the

spatial GP. The least accurate predictions are likely associated

with sudden irradiance jumps linked to the incoming of clouds

through an unobserved section of the PV generators. Exten-

sions to temporal models might help alleviate these aspects,

as illustrated for short forecast-time ahead in [11], [15].

III. ORNSTEIN-UHLENBECK PROCESS FOR LOAD

MODELING

We model the masked load as an Ornstein-Uhlenbeck pro-

cess with spikes following [9]:

dxt = γ(µ− xt)dt+ σdωt + Jtdqt, (12)

where γ is the mean reversion rate and µ the long-term mean

of the OU process. The variance of the OU process represents

normal load changes such as small loads being switched on

and off, and larger spikes represent sudden and less frequent

switching of larger loads. We model dωt as a a standard

Wiener process with diffusion σ [16]. For the jumps, we follow

a Poisson process, where Jt is a random variable, |Jt| follows

Gamma distribution, and qt is the Poisson random variable

with intensity λ:

dqt =

{

1, w/ probabilityλdt

0, w/ probability 1− λdt .
(13)

A. Numerical Solution

We discretize (12) and derive the first-order numerical

solution by the Euler-Maruyama method with step ∆t:

xi+1 = xi + γ(µ− xi)∆t+ σ(Wi −Wi−1) + Ji(Pi − Pi−1)
(14)

where ∆Wi = Wi −Wi−1 and ∆Wi ∼
√
∆tN (0, 1) are the

independent increments. In particular, the model 12 has an

explicit solution form that could be discretized as

xi = µ+ (x0 − µ)e−i∆tγ + σ

i
∑

j=1

e−γ(i−j+1)∆t · (Wj −Wj−1)

+

i
∑

j=1

e−γ(i−j+1)∆t · Ji−1(qi − qi−1). (15)

Note that our stochastic differential equation (SDE) model is

for a relatively smooth system. Thus the numerical error for

the Euler Maruyama scheme is relatively small, and the two

methods generate nearly identical numerical solutions in our

test cases. Furthermore, the computational cost of numerical

scheme (14) is O(n2), while the cost of exact solution (15) is

O(n3) with respect to the number of steps. So we implement

the Euler Maruyama scheme in our algorithm.

B. Parameter Estimation

For parameter estimation with the discrete time series

{Xi}Ni=0 we first consider a simple filter. We let yi+1 :=
f(Xi), where f(Xi) = Xi + γ(µ−Xi)∆t. Then:

Xi+1 = yi+1 + ξi+1, (16)

where ξi ∼ N (0, σ2∆t) if we do not consider the rare jumps at

first. With this preprocessing, we have the following algorithm.

We used an unbiased method based on a martingale esti-

mation function to estimate the mean reversion rate γ [9]. In

particular, the estimator is unbiased, consistent, and asymp-

totically normally distributed given the assumption that the

underlying diffusion in the SDE model is ergodic [17]. We

first write the martingale estimation function as

GN (γ) =

N
∑

i=1

ḃ(xi−1; γ)

σ2
i−1

{xi − µt − (xt−1 − µt−1)e
−γ},

(17)

where

b(xt; γ) =
dµt

dt
+ γ(µt − xt). (18)

The estimation of the γ is the unique zero point of (17):

γ̂ = − log

(

∑N
i=1 Yi−1{xi − µi}

∑N
i=1 Yi−1{xi−1 − µi−1}

)

, (19)

where

Yi−1 =
µi−1 − xi−1

σ2
i−1

. (20)
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Algorithm 1 OU Parameter Estimation

Input: PMU data {xi}Ni=0

·Estimate the mean reversion rate γ by martingale function

·Calculate the random process set {ξi}Ni=0 by (16)

·Calculate the mean µ0 and variance σ0 of {ξi}
for 1 ≤ i ≤ N do

·Identify jumps {Jj} by 3σ0

end for

if #jumps > 0 then

·Calculate Poisson parameter λ

·Estimate Gamma parameters shape k, scale θ for {Jj}
else

·No jumps identified

end if

· Calculate the modified increment mean µ1 and variance

σ1 for {ξi}Ni=0\{Jj}
· Run Kolmogorov-Smirnov test for Gaussian and Gamma

if KS test passed then

Return: µ1, σ1, λ, k, θ

end if

With the parameter estimation Algorithm 1, we can estimate

the parameters for the OU process and then generate the

predictions using the numerical solution scheme (14).

IV. BTM PV GENERATION DISAGGREGATION

In real cases, after the installment of PV panels in the grid,

we no longer have direct measurements of the load power.

The only accessible data is net power measured by µPMU

and limited measurements of solar irradiance. Thus we need

to reduce the uncertainties for more precise prediction and

planning. As with the separate tests in PV power and load

power, the data set of GHI is in 1 Hz for 10 minutes, and we

also down sampled the µPMU data to 1 Hz for 10 minutes

for convenience.

A. Net Load Model

We consider the linear power model of the distributed

system with three components: the net load - external power

injection, the masked load - the sum of the consumer demand

and the aggregated BTM PV power within the system (1). In

real cases, while we have direct measurements on the net load,

we have no direct information about the PV power and masked

load power. PV power production could be predicted by the

partial information of the solar irradiance. Moreover, we can

estimate the corresponding masked load based on the estimate

of BTM PV power and make further predictions. Thus the key

to accurate prediction is a reliable disaggregation algorithm

using limited information.

B. Disaggregation Strategy

For the Ornstein-Uhlenbeck process with jumps, we con-

sider a full parameter vector:

Θ = [γ, µ, µ1, σ1, k, θ, λ] (21)

where γ, µ are the mean reversion rate and the long-term mean

of OU process; µ1, σ1 are the mean and standard deviation of

Wiener process; k, θ are the shape and scale parameters of

the Gamma distribution that describes jumps; and λ is the

parameter for the Poisson process.

Then we can take the OU parameters calculated by Algo-

rithm 1 using the µPMU data recorded before the installment

of PV panels (thus without PV powers) as reference to

calibrate the OU parameters of the masked load:

min
Θ

||S(P obs
NET)− S(P (Θ))||2 + ||Θprior −Θ||2, (22)

where S(·) is a statistic of the net power time series of

observed data and of data generated through simulations by

using parameters Θ. The first term estimates the discrepancy

between the statistics observed and the one generated by the

simulated process. The second term represents a regularization,

where Θprior can be either nominal values or zero. The statistic

S is defined by considering the time series that generates a

stochastic process X̂(Θ) = {x̂t(Θ)} by PNET via (14) and

PPV in (1) and computes a series of statistics such as mean,

standard deviation, and weighted autocorrelations’ norm:

S(X̂) :=

[

µX̂ , σX̂ ,
1

t1
||RX̂X̂(τ)||2

]

, τ = 1, · · · , t1. (23)

V. NUMERICAL RESULTS

We present two examples: a synthetic example (§V-A) and

a realistic one (§V-B). In the synthetic example we generate

the solar irradiance with known spatial distribution and con-

sider one of the Oahu island measurements for the temporal

correlation. We also generate a simplified OU masked load

power. In the realistic case we use real µPMU measurements

and irradiance to generate the net power. The total compute

time in all our examples takes a few minutes on a regular

laptop.

A. Synthetic Example

We start the numerical illustrations of the proposed frame-

work by using a synthetic example. The point of this example

is to test the framework in ideal situations that correspond to

good parametric modeling of the irradiance, PV, and masked

load. To this end, we generate the true masked load by using

an OU process and the true PV power generation by using

a Gaussian process, both with known parameters. This data

set is used to generate the net load data. The observables in

this system are the net load data and the irradiance at the two

locations indicated in Fig. 1. In this setup we assume that the

Gaussian process has an exact spatial structure and that the

masked load is described by the correct OU process, but with

unknown parameters. We aim to (i) recover the GP parameters

from data and (ii) recover the OU process parameters of the

masked load that together with the PV power best explain the

observed net load.
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1) Calibrating the GP: We assume that we have 17 PV

panels in a limited area that corresponds to the Oahu irradiance

sensor network (Fig. 1), out from we pick two as obser-

vations. The exact GP model has the following parameters:

α = 0.0108, β = 0.0001, θx = 61.6522, θy = 74.081. We

first calibrate the GP model by using a least squares fit and

one hour’s worth of data (3600 seconds). The resulting GP

parameters are α = 0.01085, β = 1.01e−05, θx = 64.44631,

and θy = 70.899, which is an excellent fit, as expected. Then

we use the data from the two observation sites, the calibrated

GP model and the conditional distribution (6), to predict the

clear sky index at the remaining 15 sites.
2) Masked load and PV disaggregation: The disaggregation

problem follows the steps described in §(IV-B). In particular,

we solve an optimization problem that yields the maximum

likelihood of the OU parameters (that define the masked

load) that best explain the data (the net load). The likelihood

is expressed in terms of the statistics of the observed and

simulated data.

We set the true OU parameters µOU, γOU, and σOU to be

[400000, 0.01, 200]. Note that in this case we do not use the

jump process. We performed 50 solves with initial guesses

initialized at ±60% around the true values. The results from

solving these problems came to µ∗
OU ∈ (400463.6, 400463.8),

σ∗
OU ∈ (156.1, 156.8), and γ∗

OU ∈ (0.0128, 0.0131). These

results indicate that the minimizer is found closer to the true

solution, and thus the estimator approximates the true values.

This results in a good representation of the masked load

process. In Fig. 4 we illustrate the masked load reconstruction

from one such optimization (results look similar for the other

ones).

Fig. 4. Masked load (truth) and its reconstruction (prediction) through our
disaggregation strategy. The predicted masked load is represented by the mean
value process and ±2σ deviation. The true value is covered as close to 90%
by the prediction envelope, as expected.

B. Realistic Example

We also tested our framework on real data sets. We used

the same solar PV sites as in the synthetic example, only

now the solar data set is the one actually collected from the

sensor network consisting of the 17 pyranometers, measuring

GHI with a 1 Hz resolution [13]. The masked load power

measurements are collected by µPMUs and PQube3 power

quality meters manufactured by Power Standards Laboratory

in Alameda, CA, at 120 Hz [18]. These measurements are

downsampled to 1 Hz to match the solar sampling rate. The

net load power data is obtained by (1).

1) Calibrating the GP: We assume that among the 17 PV

panels we have the observable set {DH4, AP5} (Fig. 1). We

first calibrate the GP model by using a least squares fit and ten

minutes of data (600 seconds). The resulting GP parameters

are α = 0.09243, β = 1.00e−03, θx = 20.14, and θy = 17.63,

and the estimation error is ||Σmodel opt − Σobs||2 = 0.223,

which is an excellent fit. Then we use the data from the two

observation sites, the calibrated GP model and the conditional

distribution (6), to predict the clear sky index at the remaining

15 sites and compute the AC PV power prediction. Comparing

with the PV power computed by full observation data (all 17

locations) in Fig. 5, our prediction is close to the true value

and successfully predicts the sudden injection jumps.

Fig. 5. Active PV power generation and its prediction through our GP model
using eq. (11). The predicted PV power is inferred by GHI observations on
site DH4 and AP5. The true value is calculated by full observation of 17 sites.

2) Masked load and PV disaggregation: The disaggregation

problem follows the steps described in §(IV-B). We get a rough

estimation of OU process parameter set Θ1. Then we solve an

optimization problem that yields the maximum likelihood of

the OU parameters for Θopt, taking Θ1 as the initial.

In the numerical experiment we use 5 minutes of irradiance

data and net load data generated by recorded PMUs for disag-

gregation and parameter estimation. Then we make predictions

of the masked load for the next 5 minutes using the estimated

parameters. The absolute error of the parameter set suggests

the parameter estimation of the OU process is significantly

improved by introducing maximum likelihood, compared with

the rough estimation in Table II.
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Fig. 6. Real load power data vs. BTM real power prediction by the Euler-Maruyama scheme for the OU process using parameters calibrated by maximum
likelihood. We used 5 minutes of net load and irradiance data for the estimation and make predictions of the masked load for the next 5 minutes. The predicted
masked load is represented by the mean value process and ±2σ deviation calculated by 10 realizations. The true value is covered as close to 96.67% by the
prediction envelope, as expected.

µ γ µ1 σ1

|Θref −Θ1| 5.30e+02 1.97e-01 5.74e+01 1.53e+03
|Θref −Θopt| 1.58e+01 8.39e-02 2.46e-02 2.11e-02

k θ λ

|Θref −Θ1| 1.45e-02 1.13e+03 0.00e+00
|Θref −Θopt| 5.64e-01 3.51e-02 0.00e+00

TABLE II
OU PARAMETER ESTIMATION BY MAXIMUM LIKELIHOOD

The predicted masked load is represented by the mean

value process and ±2σ deviation calculated by 10 random

realizations. The true value is covered as close to 96.67% by

the prediction envelope. These intuitive results indicate that the

minimizer is found close to the true solution, which results

in a correct representation of the masked load process. In

Fig. 6 we illustrate the masked load reconstruction from one

such optimization (results look similar for the other ones).

Numerical results indicate that our approach can disaggregate

the masked load well from the net load using limited irradiance

observation. It also capture its trend as well as the variability

thus provide a more accurate prediction of the masked load

than naive predictions by just assuming the mean and standard

deviation from the historical data.

VI. CONCLUSION AND FUTURE WORK

In this paper we present a probabilistic analysis framework

to estimate behind-the-meter photovoltaic generation in a

single feeder network in real time. Within this framework

we develop a forward model consisting of a spatial stochastic

process that estimates the photovoltaic generation based on a

couple of sensors and a temporal stochastic differential equa-

tion with jumps that estimates the masked user load demand.

These models are used to disaggregate the behind-the-meter

photovoltaic generation by using net load and partial irradiance

measurements. Simulation studies with both synthetic and

real recorded solar irradiance data and µPMU data indicate

that the proposed framework is a tenable method to provide

a reliable disaggregation procedure. Moreover, simulations

indicate that we can accurately estimate the aggregated PV

active power generation at a distribution feeder with limited

sensor deployment. This model takes full consideration of

major characteristics of masked load and PV production and

thus leads naturally to predictive capability in real time. For

larger areas and same density of observations, we expect

this strategy to perform similarly and arguably better with

more sophisticated models that can take advantage of more

information. Nevertheless, the results presented in this study

are limited by the availability of measurements and future

studies should address larger areas if data becomes available.

Our novel framework can be naturally extended to several

other directions, which we plan to investigate. For the so-

lar generation predicted by partial irradiance measurements,

improvements could be made such that we can accurately

predict the irradiance jumps. On the masked load model and

disaggregation side, further improvements could be made to

the SDE model and computational framework. Variability on

different time horizons could also be considered in the future

for real applications.
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