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Abstract

The explosive wireless data service requirement accompanied with carbon dioxide emission
and consumption of traditional energy has put pressure on both industry and academia.
Wireless networks powered with the uneven and intermittent generated renewable energy
have been widely researched and lead to a new research paradigm called green communication.
In this paper, we comprehensively consider the total generated renewable energy, QoS
requirement and channel quality, then propose a utility based renewable energy allocation
policy. The utility here means the satisfaction degree of users with a certain amount allocated
renewable energy. The energy allocation problem is formulated as a constraint optimization
problem and a heuristic algorithm with low complexity is derived to solve the raised problem.
Numerical results show that the renewable energy allocation policy is applicable for any
situation. When the renewable energy is very scarce, only users with good channel quality can
achieve allocated energy.
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1. Introduction

The continuously growing demand for ubiquitous wireless network access and high data rate

lead to the rapid development of wireless cellular networks. The energy consumed to power
the bigger and more complex networks, on one hand brings network operator the rapidly rising
energy price, on the other hand, generates a large amount of carbon dioxide which results in
climate change [1]. Green radio becomes an inevitable trend [2], and is implemented from two
different perspectives. The first is to study novel techniques to improve the energy efficiency
of wireless networks which can be measured by bits-per-Joule metric [3]-[4]. However for a
fixed network size, this kind of energy efficiency design from the physical layer to the MAC
layer has already approached the theory limits [5]. The second is to substitute renewable
energy such as solar and wind power for traditional energy. The emerging trend of renewable
energy powered wireless networks equipped with energy harvesting devices [6] has been
widely studied recently. Wireless energy harvesting has been considered as a potential
technology for future 5G networks and has been intensively researched [7]. However, the
uneven and intermittent intrinsic characteristics of the renewable energy make it a finite
resource in renewable energy powered wireless network. Hence, how to efficiently use the
renewable energy distributed in energy harvesting wireless network has always been an open
issue and many valuable research results have been achieved up to now.

In [8], taking into account channel conditions and energy sources that are time varying, so
as to maximize the throughput, an optimal energy allocation with energy harvesting
constraints is proposed in several time slots and solved via the use of dynamic programming
and convex optimization techniques. In [9]-[10], and the references therein, multi-terminal
models, and energy harvesting transmitters and receivers are subsequently studied. Green
energy optimization problem in cellular networks powered by hybrid energy which include
green energy and traditional energy is studied in [11]-[12] to reduce the power consumption of
traditional energy. The study of energy cooperation between base stations (BSs) has been
widely researched owing to the recent advancement in smart grid [13] and wireless power
transfer [14] technologies. Through a two-way energy transmission between BSs, the
throughput-maximization oriented energy cooperation strategies are studied in [15]-[16]. To
the best of our knowledge, all the previous work for renewable energy utilization does not
consider the various type of quality of service (QoS) of diverse traffic type in the wireless
network powered by renewable energy.

In this paper, comprehensively considering the QoS, channel quality and the total available
renewable energy, we propose the utility based energy allocation algorithm in the renewable
energy powered orthogonal frequency division multiple access (OFDMA) cellular network.
The utility here refers to a function which describes the degree of user satisfaction with a
certain amount of allocated energy. In every time slot, each transmitter is constrained to use at
most the amount of stored energy currently available, although more energy may become
available in the future slots. Considering the traffic type with the soft QoS which means the
traffic requires a certain preferred resource but will still tolerate resource below this preferred
value, the channel quality of each user and the total amount of renewable energy at a BS, we
allocate the renewable energy available at each BS to its users in each time slot at the method
through which maximize the total utility of all users at the BS. The utility based renewable
energy allocation method can balance the fairness and efficiency at various conditions of the



reserved renewable energy at each current timeslot, the channel qualities and the traffic type

with specific QoS requirement. The contributions of this paper are as follows:

1) Firstly, compared to the existing energy utilization policies which aim at maximizing the
throughput or green energy utilization rate, in this paper we allocated the finite amount of
renewable energy at each BS from the QoS perspective, since the guarantee of QoS is the
most important thing the network should do.

2) Secondly, through the utility based renewable energy allocation algorithm, the finite
amount of renewable energy at each BS can be used with a maximum total utility.

3) Finally, although our energy allocation algorithm is proposed for soft QoS traffic type it is
also suitable for hard QoS or best effort QoS traffic type when utility function is very steep
or flat.

The remainder of the paper is organized as follows. In Section II, we describe the system
model. The renewable energy powered BS with OFDMA system is considered in this section.
Section III formulates the problem. Considering the utility function of soft QoS traffic type
then we formulate the renewable energy allocation problem as the total utility maximization
problem. In Section IV, we deduce the solution for the problem posed in Section III.
Numerical results and discussions are stated in detail in Section V. We conclude this paper in
Section VI and simultaneously present our future work.

2. System Model

In this section we first describe the system model and then analyze the energy demand of
various type of traffic.

2.1 System Scenario
Consider a single cell downlink OFDMA network with renewable energy powered base
station and N active users as shown in Fig. 1. The renewable energy sources can be solar and
wind power. The total bandwidth, #

iy 18 divided into N subchannels, each subchannel with

a bandwidth of #, = #, ./ N for each user. We assume that subcarriers are allocated
centrally and each subchannel cannot be assigned to more than one user to avoid interference
among different users. At each transmission period, the transmit power is denoted as p, .

Assuming perfect channel state information in both transmitter and receiver, the maximum
achievable data rate of the kth user, denoted as dy, is

‘2

p, |A
d, =W, log,l +k‘—k

sub

) (1)

0" sub

where /Vis the single-sided noise spectral density, and the channel frequency response of the

kth user whose data is transmitted on the kth subchannel is denoted as /2, . Consequently, at

each transmission period the transmit power for the kth user is as follows.



Fig.1. System Scenario
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The total energy consumption of the BS during time slot [7, ¢ + 7] is
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For each user at each subchannel, there is an exponentially increasing relationship between the
consumed energy Ey and data rate di. The total energy consumed for all N users at N
subchannels is

N :
E, =) L r. (4)

2.2 Energy Demand and Renewable Energy Supply

The equipment parameters of an outdoor 4G BS (which is generally called eNode B and
widely deployed throughout the world) produced by FUJITSU [17] are shown in Table 1. The
maximum transmit power of eNodeB is 60 W and the transmit power will fluctuate with the
traffic load, channel quality and QoS requirement of users.

We consider solar panels as the green energy generators. Solar panels generate electrical
power by converting solar radiation into direct current electricity using semiconductors that
exhibit the photo-voltaic effect, more information about the green energy generation and rate
can be found in [18] and its reference therein [19]-[20]. We conduct an experiment that
measures the power of the solar panel with the model SYK20-18P ( size: 540*350*25mm )



Table 1. eNode B equipment specifications

Item Specifications
Radio frequency band Band4, Band9, Band17
Bandwidth 5,10,15,20 MHZ

Downlink: OFDMA

Access scheme Uplink: SC-FDMA

Maximum transmit power 60 W (30W+30W)
Maximum transmission Downlink: 150Mb/s
rate (per sector) Uplink: 50Mb/s

made by Guangzhou SUMYOK. We observed that the maximum power is 20W and solar
energy generation depends on various factors, such as the temperature, the solar intensity, and
the geolocation of the solar panels. Taking into account of the deployment cost of solar panel
(or, windmill generator) and green energy storage devices and the time varying green energy
generator rate, the renewable energy generating devices at each BS cannot do infinitely great
and the renewable energy currently generated at each BS does not always exceed the transmit
power of BS. These factors make renewable energy at each BS a finite resource.

Markov models have been widely accepted in the literature [21]-[25] as an effective
approach to characterize the correlation structure of the fading process,Hence, we consider
allocate the finite renewable energy based on the demand of diverse traffic type from various
application. Assume that the bandwidth allocated to each subchannel is constant, and from
Formula (1) the data rate of each user is mainly determined by the allocated transmit power
from BS and the channel quality. Set the data rate as the main QoS metric, and a certain traffic
type in the wireless network needs a specific QoS. Generally, under the current network
structure, there are three kinds of QoS implementation models. The best effort QoS makes best
effort to transfer data packet, but provides no guarantees and no priorization for users. Original
internet service such as e-mail, file transfer and remote login belong to this type. The hard QoS
has an explicit reservation of network resources for traffic flows before communication starts
with strict resource requirement and poor scalability. Applications such as video conference,
audio/video phone and tele-medicine need a hard QoS guarantee. As an intermediate step
between hard QoS constraints and a pure best effort approach, soft QoS has a flexibility in
network resource supply. The soft QoS traffic usually has intrinsic resource requirements, i.e.,
they have their own preferable resource values, but can still tolerate with a less amount of
resource than the preferred amount. Soft QoS traffic also known as elastic traffic, can
gracefully adjust their transmission rates to adapt to various network conditions. Interactive
multimedia services, video on demand and most applications in current wireless networks are
typical examples of soft QoS which has a high adaptability to network conditions and
resources.

3. Problem Formulation

In this section we first define the utility function then formulate our renewable energy



allocation problem. How to model application adaptation for utility function, and what type of
overall system utility maximisation can be employed, are stated orderly in detail.

3.1 Utility Function

Preference and Utility: Preference relations are a handy way of talking about how people rank
bundles of goods. We mainly use three binary relations to talk about preferences: > (strictly
preferred to), U (indifferent between), and >~ (weakly preferred to). Utility function is used to
easily describe preferences. A utility function assigns numerical values to all bundles so that

ifx > y, we haveu(x) > u(y). As shown in Formula (1), set bandwidth WSU and the

b
parameters V, and /1, which represent the channel quality as constant, and assume the data
rate as the main utility performance metric. Then the utility value is determined by the transmit

power p, . If there are two values p,, p, of p, and p, 2 p,, ie., p, = p,, then
ulp) = ulp,).

Utility Application: Utility function have been applied in wireline and wireless network
resource allocation for many years. The utility function based resource allocation was first
proposed in [26] and recently continued to be researched in [27] etc. mainly conclude the
utility of time, spectrum, and wireless radio resources. The existing works have augmented the
utility function model by identifying and classifying the way allocations affect the utility of
different application classes. Generally, the utility based resource allocation problems usually
have an optimal object which subjects to some network constraint.

Utility Function: In this paper, we studied the utility of energy, since the renewable energy
generated at each BS is a finite and dynamic resource. As analyzed above, there is an
exponential increasing relationship between utility and the renewable energy. A precise
presentation of the utility function of renewable energy should comprehensively take into
account of the total available energy, the channel quality and the traffic type. Consider that
most applications in current networks are resource-adaptive and the network can allocate
energy to users at a flexible way, so that we give attention to the utility function for the soft
QoS traffic type. Mathematically, the following function can be used to model the utility
function of soft QoS traffic type [28]-[29],

[/(r) _ {1 (C] . ep(f—nﬂjd), (f < fﬂ]]d) (5)

1= gq). e ™D (otherwise)

where r is the renewable energy allocated by the BS through a centralized mode, i.e., from the
BS to users with diverse traffic flow at different subchannels, ¢ (0 < g < 1) denotes the
channel quality of the user, p determines the slope of the utility function, and rmid denotes the
preferable amount of resource for the soft QoS traffic. The marginal utility function is defined

dU(r)

'r
U(r) with respect to the given resource r. As shown in Fig. 2, when the allocated renewable
energy r equals rmid, the marginal utility function achieve its maximum value.

by the following equation, u(r) = , which is the first derivative of the utility function



Suppose that all traffic flows in a BS system have the same traffic type with the same QoS
requirement. According to the utility function stated above, the amount of renewable energy
allocated to each specific user at a BS determined by the channel quality q and traffic type of
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Fig.2. Utility function and marginal utility function

the user to guarantee the level of satisfaction. From the perspective of the whole BS system
with finite renewable energy resource we should consider the amount of available renewable
energy stored in the last inventory process step and channel conditions of all users to maximize
the total utility.

3.2 Problem Formulation

Assume there are N users at our BS system. The total amount of available renewable energy at
current energy allocation period is r,,, and the energy allocated to the kth user is denoted as 7;.
The traffic type and channel quality of each user may not be identical, so that the utility
function and levels of satisfaction with the same amount of renewable energy of each user are
different. Considering an amount of renewable energy allocated to the kth user with the
channel quality ¢, due to the path loss, the renewable energy actually available to the kth user

is given by £, = q, - r, . The utility function of the kth user can be expressed
as U k(rk) =0 (Z”k ~qk). Considering the channel condition of each traffic flow from

corresponding user may not be identical, we denote the preferable amount of resource for the
kth traffic flow by rmid, For the kth traffic flow, & e {1,2,---, N} ,

U, (rmid k) = Ulrmid) = U . - Thus the preferable amount of resource for the kth traffic
rmid
q,

In this paper, we aim at maximize the total utility of all users at a BS system with a limited
amount of renewable energy generated in the current energy allocation period. The problem is
formulated as,

flow rmid =




N
max Z U.r,)
k=1

1\'
z Z/‘k S 1;01’

sub. = (6)
Yr, >0

k

(k e {1,2,---,/v})

where r,, is the total amount of renewable energy that can be allocated in this current energy

allocation period. The renewable energy allocation £* = {1”1, Loy J”A,} for N users is
referred as an optimal allocation if /#*can make Formula (6) established, i.e., for all feasible

allocation # = {1”1‘,1”2’,---,1”1‘,’} , URY) > UR) , where U(R") = ZUk(rk) and
k=1

UR) = z U k(r‘ .). The optimal allocation £ may not be unique here.

k=1

4. Solution

To efficiently solve the constrained maximization problem, we appropriately relax the
constraint conditions then deduce a heuristic algorithm.

To keep allocation optimal in the wireless environment changing both in the traffic and
energy domain, we need to periodically (re)allocate resources. The available finite energy
stored at a BS in this current time period will be allocated to N users at this BS by an optimal
allocation algorithm through which makes the total utility value maximum. Due to that an
optimal solution to this problem presented in Formula (6) is very hard to find and is dependent
on the channel qualities and utility functions of traffic flows, we first relax the constraint
conditions then adopt a heuristic renewable energy allocation algorithm for soft QoS traffic
flow. According to the number of users being allocated energy, all energy allocation (EA)

method can be classified into £Z4, £4,, --- £A, . Assume that traffic flows from different users

at respective subchannels have the identical traffic type and different channel quality.

Property 1: In an optimal renewable energy allocation method, each allocated user i, i.e.,
r. > 0, must have an identical marginal utility value LIJ.( 1”1) .

Proof: Assume there exists an optimal allocation R in which there are usersiand j, (7 # J),
whose allocated resources 7, and 7, satisfy v (r,) # u (r,) and v, (z;) > u (r;) > 0.
There must exist a finite small value Az, and another allocation R with J”/’ = r, + Ar and
r.o=r - Ar,(r.’ +r =r + r.).
J J 1 J 1 J

Ur)+ U (r) =U(r, + Ar) + U (r, - Ar)

Put Formula (5) into above equation, and we get,



[/].(r].’) + Uj(rj’) = U(r) + Uj(rj) + (u(r,) - uj(rj))Ar > U(r) + Uj(rj)

The derivation declares that allocation R is not optimal which violates the assumption at the
beginning.

Property 2: At most one user, say i, with ulvy(rl,) > (0 can be allocated energy in an optimal

renewable energy allocation.
Proof: Assume there exists an optimal renewable energy allocation R which have more than

one allocated user 1 with Ul.’(rj) > 0 denoted as UJ.’(J”J.) > 0 and UJ.‘(J”J.) > 0. There
must exist another allocation R which allocates users i and j respectively with 1”1.’ and rj’ ,
where rl.’ = r, + Ar and rj’ =71 - Ar, ie., rj’ + rj’ =1 +7r,.
UR') = U(R)
= U, (r; + Ar) = U (r, = Ar)) = (U (z,) = U (7))
= U(r, + Ar) = U(r,) + U (r, = Ar) = U (r,)

_ J‘I-Jm]- UJ.(J”)dJ” B J.Ii/,

r. 1/.—A

i

ur)+ w(r)+u (r)) &J(J}) + (uj(rj) + uj‘(rj))
S N Ar

2 2
((uj’(rj) - uj‘<rj>>)
= Ar

u, (r)dr

2

>0

The derivation declares that &/(R') > U/(R), which vilate the assumption that R is an optimal
renewable energy allocation.

According to the above two properties, to reduce the computational complexity and
guarantee that the allocation performance is still tightly bounded to the optimal solution, we

assume that each user i which has been allocated energy has UI,Y(Z”I,) < 0, i.e., the amount of

allocated energy r; must exceed its preferable amount rmid;,. We conclude that an optimal
renewable energy allocation must satisfy the following three conditions:

1) All renewable energy reserved in last inventory process must be allocated.

2) All allocated users must have an identical marginal utility.

3) All allocated users have ul,‘ (r;) <0.

Set r, rmid, and p in utility function as constant and the value of the utility function is
monotone increasing along with g. That is to say, with a same amount of renewable energy, the
better the channel quality is, the larger is the utility value. Renewable energy allocation Rg={r,
ry, ***, Tk}, which allocates renewable energy to the first K users sorted by their channel
qualities is the one with the highest utility among EAx. We can find Rk through 4 steps.

1) First,fork = {1, 2, -+, £}, we decompose the marginal sigmoid utility functionu, (z;,)

into two parts and redefine the part of r, > rmid, , ie., Uk’(rk) < 0, as a new



2)

3)

4)

decreasing function u, (-), where u, (r) = u, (r + rmid k).

Second, accumulate the inverse function of Ek(-) which is denoted as Ek_l(-) , of all

K
— -1 — -1 — -1
allocated users, denoted as 7 ~'(-) , where 7~ (-) = E z, ' (-) then we get the
k=1

aggregated marginal utility function LTM(-) by inversing LTM_I(-) .

Thirdly, calculate the residual renewable energy res which is the amount of renewable
energy allocated to 7, () , then the aggregated utilityu, = u_ (res).

Finally, based on u, we can obtain the amount of energy allocated to each user k in
allocation R={r, r;, =, n}, which is given by r, = rmid, + Ek’l(ua) ,
for k =1{,2--,K} and r, =0 , otherwise. Based on R, we

calculate AU, = U(R,) — U(R, ). If AU, < 0, the optimal renewable energy

allocation R,; is achieved, otherwise return R,. The algorithm program is illustrated in
detail in Table 2.
Table 2. Algorithm programme

Heuristic algorithm Finding optimal renewable energy allocation
Initialization: R= {0, 0, ..., 0}, U(R()=0, 101, k=0.
l:fork =1{1,2,---, K}

u(r) =u(r+ rmid,)

z,”'(-)=inverse (7,(-))

end
2:for k={0, 1, ..., K}

70 =370

7 ()=inverse (Z. '(-))

res = r, . — Zrmz’dk
k
Uéi = lTSUIII <res)
r, = rmid, + 7, (u))
R, is achieved.
AU, =UR)-UR,_)
if AU <0
The optimal renewable energy allocation: R;_; is achieved.
else return R;.
k=k+1
end




5. Numerical results and discussions

First, we change the slop of utility function through changing the value of p which is set 0.1,
0.8, 3.2, 14 respectively, and observe how the parameter p impacts the utility function. As
shown in Fig. 3, when the value of p changes from 0.1 to 14, the utility function changed from
a very flat curve to a steep one. Then we set 20 traffic flows at 20 independent subchannels at
a BS, and the channel quality of each subchannel ¢ is randomly selected in the range [0, 1],
from 0 to 1. The larger value of g means the better channel quality and ¢ = 1 represents the
best channel quality. We set the preferable amount of renewable energy rmid for the best
channel quality ¢ = 1 as 10, and set 1 i.e., the total available renewable energy at each
current period to be allocated, as 100, 400, and 1200, respectively representing a scarce,
moderate, and sufficient amount of renewable energy generated at the current allocation
period.

Utility

Renewable Energy
Fig.3. Utility function with different slope p.

Set the slope of utility function as 0.1. As shown in Fig. 3, the utility function is very flat.
Set the amount of renewable energy avaliable at the current allocation period as 400, that is the
BS has a moderate amount of renewable energy. As shown in Fig. 4, the better channel quality
a user has, i.e., with a larger value of ¢, the more energy is actually available to the user. This
illustrates the system allocates renewable energy to users in a way through which a maximum
system throughput is achieved. In this case the energy allocation of the system acts in a best
effort QoS method.

Allocated renewable energy

e e e |

Users at independent subchannel with different channel quality g.

Fig.4. Allocated energy and the energy actually available to users: p=0.1, r,,~=400.
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Fig.5. Allocated energy and the energy actually available to users: p=0.8, r,,~=400.

Set the slope of utility function as 14. As shown in Fig. 3, the utility function is very steep.
Set the amount of renewable energy avaliable at the current allocation period as a moderate
level, i.e., r,,~400. Fig. 6 shows that the system allocates more renewable energy to users with
poorer channel quality, i.e., a smaller value of ¢, and the amount of energy actually available at
each user in the system is the same. That is to say the system allocates energy in a fair wayj, i.e.,
no matter what channel quality the users have, the energy actually available to each user is the
same. In this case the energy allocation of the system acts as a hard QoS method.

Set the total renewable energy generated at the current allocation period at a sufficient level,
ro—=1200. As shown in Fig. 7, no matter the slope of the utility function is flat or steep, i.e.
p=0.1, 0.8, or 14, all users will be allocated a certain amount of renewable energy. The worse
channel quality a user has, the more renewable energy will be allocated to the user. Set the
total renewable energy generated at the current allocation period at a scarce level, r,,=100. As
shown in Fig. 8, no matter what kind of utility function is adopted, only users with good
channel quality will be allocated renewable. It suggests that to achieve the goal of total utility
maximization, the optimal renewable energy allocation is determined not only by the traffic
type and channel quality, but also by the total amount of the available energy generated at the
current allocation period.

Actually available to user
Allocated renewable energy

,,,,,,,,,,,,,,,,,,,,,,,,

0.8 0.9 1
Users at independent subchannels with different channel quality g.

Fig.6. Allocated energy and the energy actually available to users: p=14, 1,=400.
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Fig.8. A scarce amount of renewable energy, r,,—=100.

6. Conclusion and future works

In this paper, we studied the renewable energy allocation policy which maximizes the total
utility of all users at a BS with a finite amount of renewable energy. In our analysis, we
comprehensively considered the traffic type, channel quality and total available renewable
energy generated at each current allocation period. We took into account the soft QoS traffic
type which most applications in the current wireless networks belongs to. Numerical results
showed that when the total amount of renewable energy is moderate and the utility function is
very steep, users at independent subchannels with various channel quality achieved the same
amount of energy actually available to them. That is to say, when the utility function is pretty
steep, the system provides a hard QoS and gives a fairness-oriented renewable energy
allocation. When the total amount of renewable energy is moderate and the utility function is
very flat, users only with a good channel quality can be allocated renewable energy. That is to
say, when the utility function is pretty steep, the system provides a best effort QoS. While the
total amount of renewable energy is scarce, no matter what kind of utility function we choose,
the renewable energy will only be allocated to the users with good channel quality. However,



in the renewable energy powered wireless networks there exists other important scarce
resource, i.e., spectrum. In order to provide the users with a high quality of experience (QoE)
we will jointly optimize the utilization of the finite renewable energy and spectrum in our
future work.
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