Выбрать язык

Двухэтапный подход DEA-AHP для выбора площадок солнечных электростанций на Тайване

Исследование, представляющее гибридную методологию DEA и AHP для оптимального выбора площадок солнечных фотоэлектрических электростанций на Тайване с анализом 20 потенциальных мест.
solarledlight.org | PDF Size: 3.4 MB
Оценка: 4.5/5
Ваша оценка
Вы уже оценили этот документ
Обложка PDF-документа - Двухэтапный подход DEA-AHP для выбора площадок солнечных электростанций на Тайване

1. Введение

В данной статье рассматривается критически важная задача выбора оптимальных площадок для солнечных фотоэлектрических (PV) электростанций на Тайване. Актуальность обусловлена глобальной необходимостью перехода от ископаемого топлива к возобновляемым источникам энергии, что усиливается пандемией Covid-19 и требованиями по борьбе с изменением климата. Тайвань, сильно зависящий от импорта ископаемого топлива и расположенный в сейсмически активной зоне, рассматривает развитие солнечной энергетики как ключевой фактор энергетической безопасности и экономической устойчивости.

1.1 Глобальная ситуация с возобновляемой энергетикой

Статья помещает исследование в контекст глобальных усилий, таких как Парижское соглашение и Европейская зелёная сделка, направленных на достижение нулевых выбросов. Подчёркивается устойчивость возобновляемой энергетики во время кризиса Covid-19: в 2020 году выработка электроэнергии из ВИЭ увеличилась на 5%, несмотря на сбои.

1.2 Потенциал солнечной энергии

Солнечная энергия определена как наиболее подходящий возобновляемый источник для Тайваня ввиду его географических и климатических условий. Однако ограничения по земле, политические вызовы и проблемы масштабирования препятствуют развитию, делая систематический выбор площадок крайне важным.

2. Методология: Двухэтапная MCDM-структура

Основной вклад — это новый двухэтапный подход многокритериального принятия решений (MCDM), сочетающий анализ среды функционирования (DEA) и метод анализа иерархий (AHP).

2.1 Этап 1: Анализ среды функционирования (DEA)

DEA используется в качестве начального фильтра для оценки эффективности использования природных ресурсов 20 потенциальных городов/уездов. Местоположения рассматриваются как единицы принятия решений (DMU).

  • Входные параметры: Температура, Скорость ветра, Влажность, Осадки, Атмосферное давление.
  • Выходные параметры: Продолжительность солнечного сияния, Инсоляция.

Местоположения, достигшие идеального показателя эффективности 1.0, переходят на следующий этап.

2.2 Этап 2: Метод анализа иерархий (AHP)

AHP применяется для ранжирования эффективных местоположений с Этапа 1 на основе более широкого набора социально-технико-экономико-экологических критериев. Метод включает попарные сравнения для выведения весов критериев и итоговых оценок местоположений.

2.3 Иерархия критериев и подкритериев

Модель AHP структурирована с пятью основными критериями и 15 подкритериями:

  1. Характеристики площадки: Уклон местности, Тип землепользования, Расстояние до сети.
  2. Технические: Солнечная радиация, Продолжительность солнечного сияния, Температура.
  3. Экономические: Инвестиционные затраты, Эксплуатационные и ремонтные затраты, Затраты на передачу электроэнергии, Поддерживающие механизмы (например, зелёные тарифы).
  4. Социальные: Общественное признание, Создание рабочих мест, Спрос на потребление электроэнергии.
  5. Экологические: Сокращение выбросов углерода, Влияние на экологию.

3. Пример использования: Тайвань

3.1 Сбор данных и потенциальные площадки

В исследовании оценены 20 крупных городов и уездов по всему Тайваню. Метеорологические данные (входные/выходные параметры для DEA) и социально-экономические данные (для AHP) были собраны из официальных тайваньских источников, таких как Центральное метеорологическое бюро и Министерство экономики.

3.2 Результаты анализа эффективности DEA

Модель DEA отфильтровала местоположения с неоптимальной эффективностью использования природных ресурсов. Только города/уезды, эффективно преобразующие климатические входные параметры (например, умеренную температуру и низкую влажность) в выходные параметры солнечной энергии (высокую продолжительность солнечного сияния и инсоляцию), получили оценку 1.0. Этот шаг сократил пул кандидатов для более детального анализа AHP.

3.3 Взвешивание AHP и итоговый рейтинг

Попарное сравнение AHP выявило относительную важность критериев. Три наиболее влиятельных подкритерия:

0.332Поддерживающие механизмы
0.122Затраты на передачу электроэнергии
0.086Спрос на потребление электроэнергии

Это подчёркивает, что политические и экономические факторы (поддержка, затраты) и локальный спрос являются более решающими, чем чистый потенциал солнечных ресурсов, в итоговом рейтинге.

4. Результаты и обсуждение

4.1 Ключевые выводы

Гибридный подход DEA-AHP успешно идентифицировал и расставил приоритеты для площадок. Сила двухэтапного процесса заключается в том, чтобы сначала обеспечить жизнеспособность природных ресурсов (DEA), прежде чем оценивать более широкую осуществимость (AHP), предотвращая высокий рейтинг для ресурсно-богатых, но в остальном неосуществимых местоположений.

4.2 Лучшие площадки

Итоговый рейтинг AHP определил три наиболее подходящих местоположения для развития крупных солнечных PV-ферм на Тайване:

  1. Город Тайнань
  2. Уезд Чжанхуа
  3. Город Гаосюн

Эти районы сочетают сильные солнечные ресурсы с благоприятными экономическими условиями (например, существующие поддерживающие механизмы), относительно низкими затратами на передачу и высоким локальным спросом на электроэнергию.

5. Технические детали и математическая формулировка

Формулировка DEA (Модель CCR): Показатель эффективности $\theta_k$ для DMU $k$ получается решением линейной программы: $$\text{Макс } \theta_k = \sum_{r=1}^{s} u_r y_{rk}$$ $$\text{при условиях: } \sum_{i=1}^{m} v_i x_{ik} = 1$$ $$\sum_{r=1}^{s} u_r y_{rj} - \sum_{i=1}^{m} v_i x_{ij} \leq 0, \quad j=1,...,n$$ $$u_r, v_i \geq \epsilon > 0$$ где $x_{ij}$ — входные параметры, $y_{rj}$ — выходные параметры, $v_i$ и $u_r$ — веса, а $\epsilon$ — неархимедово бесконечно малое число.

Проверка согласованности AHP: Критический шаг — обеспечение согласованности матрицы попарных сравнений $A$. Рассчитываются Индекс согласованности ($CI$) и Отношение согласованности ($CR$): $$CI = \frac{\lambda_{max} - n}{n-1}$$ $$CR = \frac{CI}{RI}$$ где $\lambda_{max}$ — максимальное собственное значение, $n$ — размер матрицы, а $RI$ — Случайный индекс. Приемлемо значение $CR < 0.1$.

6. Структура анализа: Пример

Сценарий: Оценка двух кандидатных площадок, «Город A» и «Уезд B», после предварительной фильтрации DEA.

Шаг 1 — Взвешивание критериев (AHP): Эксперты проводят попарные сравнения. Например, сравнение «Экономического» и «Экологического» воздействия может дать оценку 3 (умеренное превосходство Экономического над Экологическим). Это заполняет матрицу сравнений для выведения глобальных весов (например, Экономический: 0.35, Экологический: 0.10).

Шаг 2 — Оценка площадок по критериям: Оценка каждой площадки по каждому подкритерию по шкале (например, 1-9). Для «Поддерживающих механизмов», если у Города A отличные зелёные тарифы (оценка=9), а у Уезда B плохая поддержка (оценка=3), эти значения нормализуются.

Шаг 3 — Синтез: Итоговая оценка для Города A = $\sum (\text{Вес подкритерия} \times \text{Нормализованная оценка Города A})$. Предпочтительна площадка с более высокой совокупной оценкой.

Эта структурированная количественная структура заменяет импровизированное принятие решений прозрачностью и прослеживаемостью.

7. Перспективы применения и направления будущих исследований

  • Интеграция с ГИС: В будущих работах следует интегрировать этот подход MCDM с Географическими информационными системами (ГИС) для пространственной визуализации и анализа пригодности земель, создавая мощные инструменты поддержки принятия решений.
  • Динамические и вероятностные модели: Включение данных временных рядов и вероятностных прогнозов для климатических переменных и цен на электроэнергию может сделать модель адаптивной к будущим изменениям.
  • Гибридизация с другими методами MCDM: Комбинирование AHP с такими методами, как TOPSIS или VIKOR, может более надёжно обрабатывать неопределённость или конфликтующие критерии.
  • Более широкое применение: Эта двухэтапная структура легко переносима на другие задачи выбора площадок для возобновляемой энергетики (например, ветровой, геотермальной) в различных географических контекстах.
  • Интеграция оценки жизненного цикла: Расширение экологического критерия до полной оценки жизненного цикла (LCA) позволило бы оценить углеродный след от производства и утилизации PV-панелей.

8. Список литературы

  1. Межправительственная группа экспертов по изменению климата (МГЭИК). (2021). Изменение климата 2021: Физическая научная основа. Издательство Кембриджского университета.
  2. Организация Объединённых Наций. (2015). Парижское соглашение. Собрание договоров ООН.
  3. Европейская комиссия. (2019). Европейская зелёная сделка. COM(2019) 640 final.
  4. Международное энергетическое агентство (МЭА). (2020). Перспективы развития мировой энергетики 2020. ОЭСР/МЭА.
  5. Международное агентство по возобновляемым источникам энергии (IRENA). (2021). Возобновляемая энергетика и рабочие места – Ежегодный обзор 2021.
  6. Charnes, A., Cooper, W. W., & Rhodes, E. (1978). Measuring the efficiency of decision making units. European Journal of Operational Research, 2(6), 429-444.
  7. Saaty, T. L. (1980). The Analytic Hierarchy Process. McGraw-Hill.
  8. Wang, C. N., Nguyen, N. A. T., Dang, T. T., & Bayer, J. (2021). A Two-Stage Multiple Criteria Decision Making for Site Selection of Solar Photovoltaic (PV) Power Plant: A Case Study in Taiwan. IEEE Access, 9, 75509-75522. DOI: 10.1109/ACCESS.2021.3081995.

9. Экспертный анализ и критический обзор

Ключевая идея: Эта статья — не просто очередное исследование по выбору площадок; это прагматичная схема для снижения рисков инвестиций в инфраструктуру возобновляемой энергетики. Реальная ценность заключается в последовательной логике: сначала использовать DEA для безжалостной фильтрации по эффективности природных ресурсов — это непересекаемый, основанный на физике барьер — прежде чем позволить более мягким, политически нагруженным критериям AHP определить победителя. Это предотвращает распространённую ошибку выбора площадки, удобной политически, но посредственной климатически.

Логический поток: Изящество методологии — в разделении труда. DEA отвечает на вопрос «Сможет ли это здесь работать?» на основе солнца, ветра и дождя. AHP решает вопрос «Стоит ли нам строить это здесь?» на основе затрат, политики и социального воздействия. Это отражает реальный процесс принятия решений разработчиками и правительствами: переход от технического потенциала к осуществимости проекта. Высокий вес, присвоенный «Поддерживающим механизмам» (0.332), — это безжалостно честное отражение реальности: хороший зелёный тариф может перевесить несколько процентных пунктов более высокой солнечной радиации.

Сильные стороны и недостатки: Основная сила — это надёжность гибридного подхода и его валидация в сложном, реальном контексте (Тайвань). Использование устоявшихся, широко понятных инструментов (DEA, AHP) повышает воспроизводимость. Однако у модели есть заметные пробелы. Во-первых, она статична; не учитывает временную изменчивость солнечных ресурсов или будущие последствия изменения климата, что является критическим соображением, подчёркнутым в последних отчётах МГЭИК. Во-вторых, зависимость AHP от экспертных попарных сравнений, хотя и стандартная, вносит субъективность. Статья была бы сильнее, если бы дополнила это анализом чувствительности или использовала подход нечёткого AHP для обработки неопределённости, как в продвинутых приложениях, обсуждаемых на страницах методологии корпорации RAND. В-третьих, доступность и стоимость земли — часто главное узкое место — кажутся погребёнными среди подкритериев. Во многих рынках это основное ограничение.

Практические выводы: Для политиков на Тайване и в аналогичных регионах список лучших площадок (Тайнань, Чжанхуа, Гаосюн) предоставляет основанный на данных отправной пункт для концентрации инфраструктуры и стимулов. Для разработчиков эта структура — готовый контрольный список для комплексной проверки. Следующим немедленным шагом должна стать интеграция этой модели с данными ГИС высокого разрешения для перехода от анализа на уровне города к анализу на уровне земельного участка. Более того, сравнение этого результата DEA-AHP с результатами моделей пригодности площадок на основе машинного обучения — таких, которые всё чаще используются в планировании ветропарков — стало бы ценным направлением исследований для проверки сходимости (или расхождения) различных парадигм. В конечном счёте, эта работа предоставляет прочную, операционную основу. Будущее — в том, чтобы сделать её динамичной, пространственно определённой и способной обрабатывать потоки данных в реальном времени.